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Abstract. This study deals with a 3-D boundary-value problem that arises when free-surface waves interact with
a stationary body or body system in a channel or wave tank of rectangular cross-section. A consistent asymptotic
analysis and an efficient numerical solution is presented of the Green function that satisfies the linear free- surface
condition and the non-penetration condition on the channel bottom and the sidewalls. The formulation is based on
the open-sea Green function and the complete series of images is evaluated accurately based on the asymptotic
analysis. It is demonstrated that the Green function has a square-root singular behavior due to the sidewalls when
the wave frequency approaches one of the resonant frequencies. The numerical results for the Green function
presented in this paper are believed to have an absolute accuracy of 10−5.
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1. Introduction

Hydrodynamics of a body or body system in a channel is of significant importance in two
obvious engineering applications. First, in a river (water channel) or harbor transportation
system, wave interference effects between bodies and boundaries play an important role.
Secondly, model experiments of hydrodynamic forces and the resulting responses of offshore
structures such as semi-submersibles and tension leg platforms are often carried out in towing
tanks with parallel sidewalls; when evaluating the behavior of structures in the sea based on
the results of model tests in towing tanks, it is important to account for the interference effects
due to wave reflections from the tank walls.

Potential theory is often used to describe hydrodynamic wave-body interaction problems.
If we consider the fluid to be an incompressible inviscid fluid with a free surface, the result-
ing problem involves the solution of Laplace’s equation subject to various body, boundary
and free-surface conditions. For arbitrary-shaped bodies, the boundary-element method is a
powerful numerical method for solving these equations. If a Green function is constructed
to satisfy the conditions over all boundary surfaces of the fluid domain except that on the
body hull, an integral equation can be established for the unknown singularities (sources
or mixed sources and dipoles) on the wetted surface of the body only. The hydrodynamic
properties on the hull and in the fluid field can then be obtained. In the investigation of tank-
wall effects, such a Green function is referred to as thetank Green function(TGF) as it satisfies
the linearized free-surface condition and the non-penetration condition on the tank bottom and
the sidewalls. Obviously, the TGF can be formally represented by an infinite series of mirror
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images of the Green function in the open-sea. The convergence of such series, however, is
known to be extremely slow.

Morse and Feshbach [1, pp. 814–851] have given comprehensive discussions on differ-
ent representations of Green functions that describe wave propagation between two parallel
planes. These include the method of images, the method of eigenfunctions and the near-field
and far-field expansions. In the asymptotic procedure for the method of images described in
Morse and Feshbach [1, pp. 815–816], the leading-order influence of the truncated infinite
number of images locatedfar from the observation point was simply approximated by the
Fresnel integrals. Unfortunately, this did not capture the main feature of wave resonance due
to the boundary reflections. Recently, the slowly convergent propagating-wave series of mirror
images was analyzed by Chen [2] in the evaluation of the Green function of free-surface wave
problems in a channel. The study showed that the influence of the infinite number of images
locatedfar from the observation point may be accurately approximated by means of single
integrals. Valuable explicit criteria were obtained in the Green function analysis of Chen
[2] for the configuration of a wave tank to avoid reflections of transverse evanescent wave
perturbations and for the measurement duration in a wave tank to limit the influence of the
reflected propagating waves.

In order to avoid using image series, Kashiwagi [3] formulated a closed-form TGF for
the problem of infinite water depth. Computational results for radiation and diffraction forces
acting on an offshore structure were obtained by numerically evaluating a double integral
over a semi-infinite domain in the TGF expression. Vazquez and Williams [4, 5] reported
numerical calculations for the diffraction and radiation problems of a three- dimensional body
in a narrow tank with finite depth by using an eigenfunction expansion of the TGF. For each
source-field point combination, the number of terms used in the Green function derivative
series was determined adaptively according to specified convergence criteria. More terms are
required in the vicinity of a tank resonant frequency, particularly when the field point is close
to the source point. Linton [6] published a derivation of TGF expressions by representing
the wall effect on a point source in an unbounded fluid as a Fourier series whose coeffi-
cients are modified Bessel functions. The Fourier-series coefficients are modified to account
for the free-surface and bottom boundary conditions by invoking integral representations for
modified Bessel functions. The infinite series contained in such expressions converge much
more rapidly than the series that are obtained if a simple set of images is used. However, the
individual terms in the series are more complicated and the convergence deteriorates when the
field point is close to the source point or both the source and field points approach the free
surface. No computational practices have been found in the literature that make use of Lin-
ton’s [6] TGF expressions. Generally speaking, expansions in eigenfunctions and closed-form
representations with double integrals are computationally demanding.

It is noted that, although some researchers have published computational results for fluid
forces and wave-induced motions of fixed or floating bodies in a channel based on boundary-
element methods and numerical evaluation of the tank Green function, no tabulated or plotted
results have been found in the literature for the validation of the Green function itself.

The objective of the present study is to reveal analytically the characteristics of wave
resonance in narrow wave tanks and to facilitate the use of themethod of imagesin accurate
and efficient evaluation of the Green function of channel problems. The complete series of
images is divided into three groups: images in a near field, images in a middle field and
the rest of the infinite number of images in the complementary far field. The part of the
Green function induced by the near field images is evaluated in an exact manner based on
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the calculation of the open sea Green function. The part induced by the middle field images is
estimated by evaluating in an exact form the propagating waves, ignoring the evanescent wave
effect. Finally, the part of the Green function induced by the far-field images is asymptotically
expressed by a plane-wave approximation plus a parabolic correction, which have equivalent
single integral forms instead of the slowly convergent series representation. The evaluation of
the influence of the infinite number of images locatedfar from the observation point can then
be accurate and efficient. It is found from the asymptotic analysis of the far field influence that
the tank Green function has a one-sided square-root singularity respectively for the real and
the imaginary part, when the excited wave frequency approaches a resonant wave frequency.

Along with the theoretical development in Sections 2 and 3 of this paper, convergence
criteria are derived in Section 4 for the different parts of the tank Green function. In Section 5,
numerical techniques are described, particularly the asymptotic solution of the part of the
tank Green function induced by the far field images. Section 5 also gives the some numerical
results of the Green function using the present expressions. As no published results for TGF
have been found for comparison, a test procedure is described to demonstrate that the present
tank Green function solution has an absolute accuracy of 10−5. The Green function solution
is applied to the wave-interference problem of a cylinder in a channel and verified with the
published semi-analytical solution.

The present study also has relevance in the mathematical modeling of the field problems
between parallel planes that arise in other physics such as acoustics, electrostatics and electro-
magnetics.

2. Formulation of the Green function

The Cartesian coordinate systemo-xyz is defined as an ‘equilibrium’ set of axes withox
along the longitudinal direction of the wave tank. Thez = 0 plane corresponds to the calm
water level, andz is positive upwards. Thex-z plane is coincident with the center- plane of the
tank. We assume an ideal fluid and irrotational flow,ω is the oscillating frequency of the fluid
motion and the time dependence is of the form e−iωt . The tank Green function is denoted by
G(x, x′) which represents the spatial part of the velocity potential at a field pointx = (x, y, z)
in the wave tank due to a pulsating source of unit strength at the pointx′ = (x′, y′, z′). The
TGF must satisfy the following governing equations

∇2G(x, x′) = −4πδ(x − x′) in the fluid,

−ω
2

g
G+ ∂G

∂z
= 0 onz = 0 ,

∂G

∂z
= 0 on z = −h ,

∂G

∂y
= 0 on y = ±b

2
,

(1)

whereδ is the Dirac delta function,g the gravitational acceleration;h denotes the water depth,
b the width of the wave tank. In addition, the Green function must satisfy a radiation condition
that states that, at infinity,G is associated only with waves that propagate away from the
source.
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The solution of (1) can be obtained by considering an infinite number of images of the
source at the positionsx′m = (x′, y′m, z′) (m = 0 represents the source itself), that is

G(x, x′) =
∞∑

m=−∞
GO
m , (2)

whereGO
m = GO(x, x′m) is the open-sea Green function satisfying the first three equations in

(1), which represents the potential at the field pointx due to them-th image of the source at
the pointx′m with they-coordinatey′m expressed as

y′m = (−1)my′ +mb . (3)

As GO
m is an axisymmetric function about the vertical axis through the source or im-

age pointx′m, the Neumann boundary condition on the sidewalls in (1) can be verified by
differentiating (2) and rewriting the summation fory = b/2,

∂G

∂y
=
∞∑
m=0

∂

∂y
(GO
−m +GO

m+1 = 0 (4)

and fory = −b/2,

∂G

∂y
=
∞∑
m=0

∂

∂y
(GO
−m−1 +GO

m) = 0 . (5)

The open-sea Green functionGO
m is given by Wehausen and Laitone [7] in the form of

principal-value integral as

GO
m =

1

rm
+ 1

r ′m
+ P

∫ ∞
0
F(µ)J0(µρm)dµ+ i3J0(k0ρm) , (6)

whereJ0 is the first kind of Bessel function,k0 satisfies the dispersion relation

K0 tanh(k0h) = ω2/g (7)

and where other quantities and functions are defined as

ρm =
√
(x − x′)2+ (y − y′m)2 , (8)

rm =
√
ρ2
m + (z− z′)2 , (9)

r ′m =
√
ρ2
m + (z+ z′ + 2h)2 , (10)

F(µ) = (µ+ ν)e−2µh coshµ(z+ h) coshµ(z′ + h)
(µ− ν)− (µ+ ν)e−2µh

, (11)

3 = 2π(k2
0 − ν2) coshk0(z + h) coshk0(z

′ + h)
(k2

0 − ν2)h+ ν (12)

with
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ν = ω2/g . (13)

The integral form (6) is computationally inefficient. This is mainly due to the singularity
and oscillations in the integrand, which makes it necessary to employ quite a large number
of points in the quadrature used in the estimation of the integral. Therefore, careful treatment
is needed (e.g.Newman [8]). Alternatively, a series expansion of (6) presented by John [9],
which has been proven very efficient whenρm is not small, can be written as

GO
m = ζ0(z, z

′)H0(k0ρm)+
∞∑
n=1

ζn(z, z
′)K0(kn, ρm) , (14)

where the first term represents the propagating wave and the summation describes the evanes-
cent wave effect;H0 andK0 are, respectively, the Hankel function of the first kind and the
modified Bessel function;kn are defined as the evanescent wave number, which are real
positive solutions of the equation

kn tan(knh) = −ω2/g . (15)

Thez-dependent functions in (14) are defined as

ζ0(z, z
′) = i3 , (16)

ζn(z, z
′) = 8kn

2knh+ sin(2knh)
coshkn(z + h) coskn(z

′ + h) . (17)

The slowly convergent image series (2) can be rewritten as a sum of three parts,

G = GN +GM +GF (18)

with GN the potential induced by a finite series of source and images in a near field,

GN =
M0∑

m=−M0

GO
m (19)

andGM the potential induced by a finite series of images in a middle field, where the evanes-
cent wave effect can be neglected,

GM = ζ0(z, z
′)

2M1−1∑
m=M0+1

[
H0(k0ρm)+H0(k0ρ−m)

]
. (20)

In Equation (18),GF represents the potential induced by the remaining infinite number of
images in the far field, which can be expressed only by propagating waves as

GF(ζ0(z, z
′)

4∑
l=1

∞∑
m=0

H0(Rml) , (21)

whereRml denotes the non-dimensional horizontal distance between the field point and the
source (or image) point defined by

Rml =
√
X2+ Y 2

ml m = 0,1,2,3,4 (22)
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with

X = k0(x − x′) , Yml = 2k0b(m+ Ym) , (23)

whereYl(l = 1,2,3,4) are the non-dimensional transverse distances between the field point
and the nearest four images in the far field,

Y1 = M1 − (y − y′)/(2b), Y3 = M1+ 1/2− (y + y′)/(2b) ,
Y2 = M1 + (y − y′)/(2b), Y4 = M1+ 1/2+ (y + y′)/(2b) . (24)

Despite thez-dependence, evaluation of Equation (21) is relevant to a number of wave-
propagation problems between parallel walls in other areas of physics, such as acoustics [1].

The derivatives of the TGF are necessary in the boundary-element method. They can be
found by differentiation of (18), and are summarized in the Appendix.

With the techniques developed by, for example, Newman [8, 10] and Teste and Noblesse
[11], the evaluation of the integral form (6) of the open-sea Green function can be very
fast. This, combined with the faster John series (14), provides efficient algorithms for the
calculation ofGN and the derivatives. The calculation ofGM and its derivatives is based on
the evaluation for the Hankel functions of zero and first order. It is efficient provided that
the truncation numberM1 is not very large. It will be shown that, if all the images in (21)
are locatedfar enoughfrom the tank, the potentialGF and its derivatives have simple and
accurate asymptotic expressions in thevicinity of the source, whose numerical evaluation is
easy and rapid.

3. Asymptotic analysis forGF

The Hankel function in (21) can be expanded by use of Graf’s addition theorem [12, (9.1.79),
p. 363],

H0(Rml =
∞∑
n=0

αn(−1)nJ2n(X)H2n(Yml) , (25)

whereα0 = 1 and αn = 2 whenn ≥ 1; J2n(X) andH2n(Yml) are the first-kind Bessel and
Hankel functions of 2n-th order. The expansion (25) is absolutely convergent when|X| <
|Yml|.

WhenYml is large, the Hankel function in (25) can be asymptotically expressed [12, Equa-
tion (9.2.7), p. 364] as

H2n(Yml) = (−1)nceiYml (Y
−1/2
ml + icnY

−3/2
ml + <mn) , (26)

where the constants are given byc = e−iπ/4√2/π andcn = (16n2− 1)/8, and the error term
<mn is governed by the first neglected term of the asymptotic series [13] as

|<mn| < (16n2− 1)(16n2 − 9)

128
Y
−5/2
ml . (27)

Invoking the asymptotic expression (26) for the Hankel function, substitution of (25) in
(21) we have

GF = cζ0(z, z
′))

4∑
l=1

[
η1(Yl)+ ξ2(X)η2(Yl)+<

]
, (28)
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where

ξ2(X) = 1

2
X2− 1

8
, (29)

η1(Yl) = e2iBYl
√

2πB

∫ ∞
0

t−1/2e−Yl t

1− e−t+i2B
dt , (30)

η2(Yl) = ie2iBYl

√
2πBB

∫ ∞
0

t1/2e−Yl t

1− e−t+i2B
dt , (31)

with B = k0b the non-dimensional tank width.
Based on (27), the error term in (28) is bounded by

|<| < |ξ3(X)η3(Yl)| , (32)

where

ξ3(X) = 1

128
(16X4 + 24X2 + 9) (33)

and

η3(Yl) = e2iBYl

3
√

2πBB2

∫ ∞
0

t3/2e−Yl t

1− e−t+2i2b
dt . (34)

The following identities have been used in the derivation of (28) and (32),

∞∑
n=0

αnJ2n(X) = 1 , (35a)

∞∑
n=0

cnαnJ2n(X) = 1

2
X2− 1

8
, (35b)

∞∑
n=0

αn(16n2− 1)(16n2 − 9)J2n(X) = (16X4+ 24X2 + 9) (35c)

and
∞∑
m=0

e2iBm

√
(m+ Yl) =

1√
π

∫ ∞
0

t−1/2e−Yl t

1− e−t+i2B
dt, (36a)

∞∑
m=0

e2iBm√
(m+ Yl)3/2

= 2√
π

∫ ∞
0

t1/2e−Yl t

1− e−t+i2B
dt, (36b)

∞∑
m=0

e2iBm√
(m+ Yl)5/2

= 4

3
√
π

∫ ∞
0

t3/2e−Yl t

1− e−t+i2B
dt. (36c)
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The identity (35a) can be found in [12, (9.1.46), p. 361], while we may verify (35b) and
(35c) by repeatedly using (9.1.41) and its differentiation, also in [12, p. 361]. Equation (36)
can be deduced from Lipschitz’s formula [14, p. 28]. Equations (36a) and (36b) have been
used by Chen [2] in the Green function analysis, while transforms similar to (36a) have been
used by Eatock Taylor and Hung [15] and Yeung and Sphaier [16] in the semi-analytical
solutions for a vertical cylinder in a wave tank to account for the influence of the complete
infinite number of image cylinders.

The derivatives of the far-field part of the Green function are obtained by differentiating
the asymptotic expression (28) and are presented in the Appendix.

It is seen that the summation over the infinite number of images in the far field is now
expressed in (28) byYl-dependent functionsη1(Yl) and η2(Yl) which have single integral
representations as given by (30) and (31). The single integral representations are much more
advantageous than the slowly convergent infinite series due to the fact that the kernels are
smooth functions with an exponentially decaying component; the numerical evaluation is then
easy and rapidly convergent. Physically, the first term in the brackets in the asymptotic expres-
sion (28) represents a plane-wave approximation, whereas the second term gives a correction.
The plane-wave term exhibits a very important feature of the tank wall effects, that is, tank
resonance occurs when the tank width is an integer multiple of half the wavelength, where
both the infinite series and the integral expression ofη1(Yl) have singularities. No matter how
large the truncation numberM1 is, the singularity exists in the far-field solution. Therefore,
the tank resonance cannot be properly modeled by taking only a finite number of images in
the Green-function calculation.

It is important to know the singular behavior of the tank resonance when the excited wave
number approaches a resonant wave number,i.e.whenB → nπ, n = 0,1,2,3, . . . .

In this case the main contribution to the integral ofη1(Yl) is near the singular pointt = 0.
Therefore, by denoting thatε = 2|B − nπ |, we have

η1(Yl) = e2iBYl
√

2πB

∫ ∞
0

t−1/2e−Yl t

1− e−t+i2B
dt = e2iBYl

√
2πB

∫ 1

0

t−1/2e−Yl t

1− e−t+iεsign(B−nπ)dt +O(1),

whenε→ 0 ,

(37)

where sign(B−nπ) is the sign of(B−nπ). Taylor’s expansion of e−t+iεsign(B−nπ) shows that∫ 1

0

t−1/2

1− e−t+iεsign(B−nπ)dt =
∫ 1

0

t−1/2

t − iεsign(B − nπ)dt +O(1)

= 2√
ε

∫ 1/
√
ε

0

u2+ i sign(B − nπ)
1+ u4

du+O(1) .
(38)

The last integral can be approximated by∫ ∞
0

u2+ i sign(B − nπ)
1+ u4

dt = π [1+ i sign(B − nπ)]
2
√

2

with an error ofO(
√
ε. Thus, the asymptotic behavior ofη1(Yl) can be expressed as

η1 =
√

π

2Bε
ei2nπYlei π4 sign(B−nπ) +O(1), whenε→ 0 . (39)
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Substitution of (39) in (28) gives

GF = 2√
Bε
3(z, z′)

{
cos

[
nπ(y − y′)/b]+ (−1)n cos

[
nπ(y + y′)/b]}×

ei π4 [1+sign(B−nπ)] +O(1), whenε→ 0 .

(40)

This indicates that the real part ofGF has a one-sided square-root singularity whenB → nπ

from the smaller side, while the imaginary part ofGF has the singularity whenB → nπ from
the greater side.

The asymptotic expression (40) is independent ofYl and, therefore, may be extended for
the infinite propagating-wave series, which includes all the mirror images. As the evanescent-
wave modes do not exhibit wave resonance, it is expected that the tank Green functionG

contains the same singularity as inGF . The detailed asymptotic analysis for the resonant
behavior inG may be quite lengthy. A square-root singularity has been reported by Yeung
and Sphaier [16] for the added mass and damping coefficients of a truncated cylinder in a
channel.

4. Convergence criteria

In this section we discuss the convergence criteria for the evaluation of the potentials in-
duced by the images in the middle and far fields, and give some simple expressions for the
determination of the truncation numbersM0 andM1.

In order to simplify the analysis of the part of the Green function induced by the middle
and far-field images, the evanescent-wave effect in the open-sea Green function (14) has been
ignored in the approximations (20) and (21). The error can be found by means of the asymp-
totic expression of the modified Bessel functionK0(knρm) for large arguments. In this case
the evanescent-wave series is dominated by the first term whereK0(k1ρm) can be expressed
asymptotically as

K0(k1ρm) ≈
√

π

2k1ρm
e−k1ρm . (41)

As the evanescent-wave numberk1 satisfies the relationk1 tan(k1h) = −ω2/g, we have

π

2
< k1h < π . (42)

By using (3) and the truncation notation in (19), we have that the distance between any field
points in the tank and the images in the middle or far field satisfies

ρm ≥ (|m| − 1)b ≥ M0b . (43)

Substitution of (41) and (42) in (40), therefore, provides that

K0(k1ρm)

√
h

M0b
e
−
πbM0

2h . (44)

This equation gives a criterion for the truncation numberM0. For example, if at least five-
figure precision is required, the truncation number is approximately bounded by
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M0 ≥ 1+ Int(7h/b) . (45)

We obtain Equation (45) by assumingh/b = O(1). If h→∞, we haveζn(z, z′)→ O(h−1),
based on (17) and (42). This, combined with (44), may provide another criterion for the
truncation numberM0 for deep-water cases.

The truncation numberM1 determines the distance between the field point and the nearest
images in the far field,Yl, and hence the convergence and accuracy of the asymptotic solution.
First of all, the convergence of the series expansion (25) requires that

M1 > |X| + (2b)−1|y − y′| . (46)

The truncation numberM1 is also essential for the numerical precision of the asymptotic
expression (28), where the propagating waves of the far field images are expressed by the
plane-wave approximation plus a correction. The error function is defined by (32). From
Equation (34), we have

|η3(Yl)| < 1

3
√

2π(BYl)5/2
max{6·4, Yl} . (47)

Thus, in order to guarantee an absolute accuracy of 10−5 for the approximation of (21) by
(28), we may use the following condition

M1 > max
{
13·5B−1(X4+ 1·5X2+ 0·5625)−

5
3 (X4+ 1·5X2+ 0·5625)

2
3

}
+(2b)−1|y − y′| .

(48)

Because the negligence of the evanescent-wave effect is necessary for the far-field approxi-
mation, another restriction has to be set for the truncation numberM1,

M1 ≥ (M0+ 1)/2 . (49)

In the case of using the equality in (49),M0 has to be taken as an odd number so that all the
images can be included in either near or far field.

It is seen from (46) and (48) that the present analysis for the TGF is more efficient for
small |X| due to the fact that high accuracy can be reached when a small number of images
is used in the middle field. In other words, the plane-wave approximation plus the parabolic
correction for the far-field images is more effective when the observation point is close to the
vertical plane through the source and images. Conditions (45), (46), (48) and (49) all have to
be satisfied in the numerical solution of the tank Green function presented in this paper.

5. Numerical solution

As mentioned in the end of Section 2, much effort has been made to calculate efficiently the
open-sea Green function by, for example, Newman [8, 10] and Teste and Noblesse [11]. These
form a good basis for the evaluation of the tank Green function formulated in the present paper,
but they are not repeated here. The numerical solution in this paper for the open-sea Green
function has been verified by Pidcock [17] results with very good agreement.

The evaluation forGF is based on the numerical integration of the single integrals defined
in (30) and (31). As the integrands are smooth functions with exponentially decreasing com-
ponent, accurate and efficient numerical integration can be achieved by integration rules of
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Table 1. Tank Green Function and thexyz-derivatives fork0b = 3·1; h/b = 0·5, (x, y, z) =(0·2b,
0·01b, 0·0), (x′, y′, z′) = (0·0, 0·1b, 0·0).

Real part Imaginary part

M0=9M1=18 M0=9M1=30 M0=9M1=18 M0=9M1=30

GFh 3·509596E-01 −2·643842E-01 −6·144126E-01 −4·722516E-01

GMh 1·000805E+00 1·616141E+00 7·986270E-01 6·564695E-01

GNh −6·178405E-01 −6·178405E-01 4·188264E+00 4·188264E+00

Gh 7·339239E-01 7·339165E-01 4·372478E+00 4·372482E+00

GFx h
2 5·111367E-03 2·710823E-03 3·880662E-03 −1·187938E-03

GMx h
2 −1·880335E-02 −1·642792E-02 3·730163E-02 4·238579E-02

GNx h
2 −1·797648E+01 −1·797648E+01 −4·879619E+00 −4·879619E+00

Gxh
2 −1·799017E+01 −1·799020E+01 −4·838436E+00 −4·838421E+00

GFy h
2 −5·702604E+00 −1·045881E+01 −1·148211E+01 −4·655023E-01

GMy h
2 1·939781E+01 2·415393E+01 −1·475350E+00 −1·249182E+01

GNy h
2 2·069194E+01 2·069194E+01 1·295730E+01 1·295730E+01

Gyh
2 3·438715E+01 3·438707E+01 −1·535416E-04 −2·288818E-05

GFz h
2 4·970878E-01 −3·744652E-01 −8·702340E-01 −6·688818E-01

GMz h
2 1·417507E+00 2·289050E+00 1·131149E+00 9·298021E-01

GNz h
2 −8·750901E-01 −8·750901E-01 5·932120E+00 5·932120E+00

Gzh
2 1·039505E+00 1·039495E+00 6·193036E+00 6·193041E+00

Gauss type. First, the semi-infinite interval is cut into a finite domain [0, 1] and the remain-
ing semi-infinite domain[1,∞]. The 15-point Gauss-Laguerre rule is used directly for the
infinite-domain integration. The non-uniform coordinate stretchingst1 = 4

√
t and t2 =

√
t

are performed, respectively, for the finite-domain integration inη1(Yl) and η2(Yl) in order
to remove the singularity at the origin and to further smooth the integrands, particularly in
the vicinity of resonant frequencies. The 40- point Gauss-Legendre rule is then employed for
the finite-domain integration in the strained coordinates. At least five-figure precision can be
reached in the numerical evaluation ofη1(Yl) andη2(Yl).

Some numerical examples show that the computational time for the TGF by the present
procedure is several times that for the open-sea Green function. The computational time for
GF is only a small part of the total time of the tank Green function calculation.

In order to demonstrate the accuracy of the present TGF solutions, Table 1 compares
some numerical results calculated under the same input conditions,k0b = 3·1, h/b = 0·5,
(x, y, z) = (0·2b, 0·0) and(x′, y′, z′) = (0·0, 0·1b, 0·0), but with different image arrangements
in the middle and far field. It is shown in Table 1 that by increasing the number of images in
the middle field, numerical results for the tank Green function and thexyz-derivatives change
within an absolute error of 10−5, although both the middle-field solution and the far-field
solution vary significantly. The influence of the far-field images does not seem to reduce for
the given wave number when the number of images in the middle field increases from 52
to 100 (corresponding, respectively, toM1 = 18 and 30). The accuracy of the TGF and its
derivatives has also been tested for different source- field point combinations and different
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1

Figure 1.Real part (up) and imaginary part (down) of
the tank Green functionvs. the wave number. Dashed
lines are solutions of the open-sea Green function.
(x, y, z) = (0·2b, 0·01b, 0·0); (x′, y′, z′) = (0·0, 0·01b,
0·0); h/b =0·5.

Figure 2. Real part (up) and imaginary part (down)
of the x-derivative of the tank Green functionvs. the
wave number. Dashed lines are solutions of the open-
sea Green function.(x, y, z) = (0·2b, 0·01b, 0·0);
(x′, y′, z′) = (0·0, 0·01b, 0·0); h/b =0·5.

wave numbers by increasing the number of images in the near field or both image numbers in
the near and middle field. Good consistency has been obtained.

Figure 1–4 illustrate the non-dimensional tank Green function and its derivatives as func-
tions of the non-dimensional wave number. The tank configuration and the source and observation-
point positions are the same as for Table 1. It is seen from these figures that the tank Green
function is very different from the open-sea Green function, particularly in the vicinity of
the resonant pointsk0b = 0, π,2π,3π, . . . . These resonant regions characterize the tank-
wall effects and should be treated carefully in the experimental and computational analyses of
hydrodynamic wave problems in a channel. The square-root singular behavior as indicated in
(40) is demonstrated in the numerical solution, except forGx , as no resonances occur in the
longitudinal mode. In fact, if more computational points are added to Figure 2 to approach the
resonant frequencies, it will be seen thatGx is continuous.

The numerical solution of the tank Green function presented above is implemented in
a three-dimensional boundary-element-method software package to predict wave- body in-
teractions in a channel. To validate its effectiveness, it is applied to investigate the wave-
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1

Figure 3. Real part (up) and imaginary part (down)
of the y-derivative of the tank Green functionvs.
the wave number. Dashed lines are solutions of the
open-sea Green function.(x, y, z) = (0·2b, 0·01b, 0·0);
(x′, y′, z′) = (0·0, 0·01b, 0·0); h/b =0·5.

Figure 4. Real part (up) and imaginary part (down)
of the z-derivative of the tank Green functionvs. the
wave number. Dashed lines are solutions of the open-
sea Green function.(x, y, z) = (0·2b, 0·01b, 0·0);
(x′, y′, z′) = (0·0, 0·01b, 0·0); h/b =0·5.

interference effects on a truncated cylinder in a channel, which have been studied semi-
analytically by Yeung and Sphaier [16]. In the present numerical investigation, the surface
of the cylinder is panelized as 448 facets with 6 equally divided intervals in depth, 4 in radial
direction and 32 in circumference. The top of the cylinder is also panelized as a mathematical
lid to suppress a possible appearance of irregular frequencies. The cylinder is placed in the
center of the channel. The computation is performed on a HP workstation.

Figure 5 demonstrates the non-dimensional added-mass and damping coefficients for heave
motion as a function ofkb/(2π). We obtained good agreement is obtained between the semi-
analytical solution [16] and the numerical computation using the present Green-function eval-
uation and only 448 body-surface panels, showing the robustness of the new algorithm. It is
noted that the plot of the present numerical results is based on a more sparse set of data with
a straight-line fit between adjacent points.
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Figure 5 Non-dimensional added mass (left) and damping (right) coefficients for heave motion of a cylinder in a
channel. Above is the semi-analytical solution of Yeung and Sphaier [16], wherea andd denote the cylinder radius
and draft;w, the channel width;m0w = k0b according to the present notation. Below is the present numerical
solution forb/2a = 3,5, 7, 10.

6. Concluding remarks

A consistent asymptotic analysis has been presented in this paper for the Green function in
hydrodynamic-wave problems in a channel to account for the influence of the infinite number
of wall images. It is clear from this analysis that channel-wall effects are difficult to model
when only a finite number of images are used. However, based on the asymptotic analysis,
the influence of the infinite number of images can be accurately and efficiently taken into
account by the plane-wave approximation plus the parabolic correction. This procedure is
valid for all source-field point combinations, but the numerical efficiency increases when the
distance along the channel between the source and the field point decreases. Also, based on
the asymptotic analysis, it has been shown that the Green function has a square-root singular
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behavior due to the sidewalls at the frequencies corresponding to the occurrence of transverse
resonant modes in the channel. Numerical results have verified the theoretical expressions
and the robustness of the algorithm. Based on the asymptotic analysis of channel resonance,
rapidly convergent series expressions for (30) and (31) may be developed to further accelerate
the numerical algorithm.
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Appendix: Derivatives of the tank Green function

The derivatives of the TGF are necessary in the boundary-element method. They can be found
by differentiating (18),(

∂

∂x
,
∂

∂y
,
∂

∂z

)
G =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)(
GN +GM +GF

)
. (A1)

The derivatives of the near-field part of the Green function can be expressed in terms of the
open-sea Green function as

∂

∂x
GN =

M0∑
m=−M0

x − x′
ρm

∂

∂ρm
GO
m ,

∂

∂y
GN =

M0∑
m=−M0

y − y′m
ρm

∂

∂ρm
GO
m ,

∂

∂z
GN =

M0∑
m=−M0

∂

∂z
GO
m .

(A2)

The derivatives of the middle-field part of the Green function can be represented by the Hankel
functions as

∂

∂x
GM = −k0ζ0(z, z

′)(x − x′)
2M1−1∑
m=M0+1

[
H1(k0ρm)

ρm
+ H1(k0ρ−m)

ρ−m

]
,

∂

∂y
GM = −k0ζ0(z, z

′)
2M1−1∑
m=M0+1

[
y − y′m
ρm

H1(k0ρm)+ y − y
′−m

ρ−m
H1(k0ρ−m)

]
,

∂

∂z
GM = ζ ′0(z, z′)

2M1−1∑
m=M0+1

[
H0(k0ρm)+H0(k0ρ−m)

]
.

(A3)

Hereafterζ ′0(z, z
′) denotes the derivative ofζ0(z, z

′) with respect toz.
The derivatives of the far field part of the Green function are obtained by differentiating

the asymptotic expression (28) as
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∂

∂x
GF = ck0ζ0(z, z

′)X
4∑
l=1

η2(Yl) ,

∂

∂y
GF = ick0ζ0(z, z

′)
4∑
l=1

(−1)l
{
η1(Yl)+

[
1
2 + ξ2(X)

]
η2(Yl)

}
,

∂

∂z
GF = cζ ′0(z, z′)

4∑
l=1

[
η1(Yl)+ ξ2(X)η2(Yl)

]
.

(A4)

A higher-order term proportional toη3(Yl) is neglected in
∂

∂y
GF in (A4).
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